Math 7310 Fall 2010: Introduction to Geometric Representation Theory
نویسنده
چکیده
1. Spaltenstein’s theorem and Hotta’s construction 1 2. Equivariant cohomology and divided differences 5 3. Review of: Borel subgroups, parabolic subgroups, the Bruhat decomposition 10 4. The Steinberg scheme 12 5. Algebras of constructible correspondences 13 6. Hall algebras 17 7. Geometric construction of Uq(n+) for simply-laced Lie algebras 20 8. Convolution in Borel-Moore homology 23 9. Grojnowski-Nakajima quiver varieties 25 10. The affine Grassmannian 38 11. The geometric Satake correspondence 43 12. Mirković-Vilonen cycles and polytopes 45 References 47
منابع مشابه
A representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملQuantum Computing - From Linear Algebra to Physical Realizations
quantum computing from linear algebra to physical realizations quantum computing: from linear algebra to physical quantum computing: from linear algebra to physical quantum computing from linear algebra to physical realizations click here to access this book : free download mathematical essentials of quantum computing quantum computing : preface crcnetbase quantum computing: lecture notes cwi q...
متن کاملOn Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric−arithmetic index of graphs, Iran. J. Math Chem., 1 (2010) 17−27, in this paper we present lower and upper bounds on the third geometric−arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus−Gaddum−type result for GA3.
متن کاملF2015 Topics Perverse Sheaves and Fundamental Lemmas
[1] A. Arabia, Faisceaux pervers sur les varie?te?s alge?briques complexes. Correspondance de Springer, [2] A. Arabia, Introduction a‘ l?homologie d?intersection [3] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, in: Analyse et topologie sur les espaces singuliers, Aste?risque 100, 1982. [4] A. Borel et. al., Intersection Cohomology, Birka?user Progress in Math. 50, 1984, SB 2083. [...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010